Regional carbon dioxide implications of forest bioenergy production

Author:  ["Tara W. Hudiburg","Beverly E. Law","Christian Wirth","Sebastiaan Luyssaert"]

Publication:  Nature Climate Change

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Climate environment

Abstract

Substituting fossil fuels with bioenergy from forests, as well as thinning forests to reduce wildfire emissions, has been proposed as a means of cutting carbon dioxide emissions. A study based on inventory data for US West Coast forests now challenges this proposal, and finds that it could lead to 2–14% higher emissions than current management practices over the next 20 years. Strategies for reducing carbon dioxide emissions include substitution of fossil fuel with bioenergy from forests1, where carbon emitted is expected to be recaptured in the growth of new biomass to achieve zero net emissions2, and forest thinning to reduce wildfire emissions3. Here, we use forest inventory data to show that fire prevention measures and large-scale bioenergy harvest in US West Coast forests lead to 2–14% (46–405 Tg C) higher emissions compared with current management practices over the next 20 years. We studied 80 forest types in 19 ecoregions, and found that the current carbon sink in 16 of these ecoregions is sufficiently strong that it cannot be matched or exceeded through substitution of fossil fuels by forest bioenergy. If the sink in these ecoregions weakens below its current level by 30–60 g C m−2 yr−1 owing to insect infestations, increased fire emissions or reduced primary production, management schemes including bioenergy production may succeed in jointly reducing fire risk and carbon emissions. In the remaining three ecoregions, immediate implementation of fire prevention and biofuel policies may yield net emission savings. Hence, forest policy should consider current forest carbon balance, local forest conditions and ecosystem sustainability in establishing how to decrease emissions.

Cite this article

Hudiburg, T., Law, B., Wirth, C. et al. Regional carbon dioxide implications of forest bioenergy production. Nature Clim Change 1, 419–423 (2011). https://doi.org/10.1038/nclimate1264

View full text

>> Full Text:   Regional carbon dioxide implications of forest bioenergy production

Emission pathways consistent with a 2 °C global temperature limit

Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring