Life history and spatial traits predict extinction risk due to climate change

Author:  ["Richard G. Pearson","Jessica C. Stanton","Kevin T. Shoemaker","Matthew E. Aiello-Lammens","Peter J. Ersts","Ned Horning","Damien A. Fordham","Christopher J. Raxworthy","Hae Yeong Ryu","Jason McNees","H. Reşit Akçakaya"]

Publication:  Nature Climate Change

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Climate environment

Abstract

Climate change could be a game-changer for biodiversity conservation, potentially invalidating many established methods including those employed in vulnerability assessments. Now, a simulation study finds that extinction risk due to climate change can be predicted using measurable spatial and demographic variables. Interestingly, most of those variables identified as important are already used in species conservation assessment. There is an urgent need to develop effective vulnerability assessments for evaluating the conservation status of species in a changing climate1. Several new assessment approaches have been proposed for evaluating the vulnerability of species to climate change2,3,4,5 based on the expectation that established assessments such as the IUCN Red List6 need revising or superseding in light of the threat that climate change brings. However, although previous studies have identified ecological and life history attributes that characterize declining species or those listed as threatened7,8,9, no study so far has undertaken a quantitative analysis of the attributes that cause species to be at high risk of extinction specifically due to climate change. We developed a simulation approach based on generic life history types to show here that extinction risk due to climate change can be predicted using a mixture of spatial and demographic variables that can be measured in the present day without the need for complex forecasting models. Most of the variables we found to be important for predicting extinction risk, including occupied area and population size, are already used in species conservation assessments, indicating that present systems may be better able to identify species vulnerable to climate change than previously thought. Therefore, although climate change brings many new conservation challenges, we find that it may not be fundamentally different from other threats in terms of assessing extinction risks.

Cite this article

Pearson, R., Stanton, J., Shoemaker, K. et al. Life history and spatial traits predict extinction risk due to climate change. Nature Clim Change 4, 217–221 (2014). https://doi.org/10.1038/nclimate2113

View full text

>> Full Text:   Life history and spatial traits predict extinction risk due to climate change

Ecological stability in response to warming

Taming hurricanes with arrays of offshore wind turbines