Controlled folding of synthetic polymer chains through the formation of positionable covalent bridge

Author:  ["Bernhard V. K. J. Schmidt","Nina Fechler","Jana Falkenhagen","Jean-François Lutz"]

Publication:  Nature Chemistry

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Chemistry

Abstract

Covalent bridges play a crucial role in the folding process of sequence-defined biopolymers. This feature, however, has not been recreated in synthetic polymers because, apart from some simple regular arrangements (such as block co-polymers), these macromolecules generally do not exhibit a controlled primary structure—that is, it is difficult to predetermine precisely the sequence of their monomers. Herein, we introduce a versatile strategy for preparing foldable linear polymer chains. Well-defined polymers were synthesized by the atom transfer radical polymerization of styrene. The controlled addition of discrete amounts of protected maleimide at precise times during the synthesis enabled the formation of polystyrene chains that contained positionable reactive alkyne functions. Intramolecular reactions between these functions subsequently led to the formation of different types of covalently folded polymer chains. For example, tadpole (P-shaped), pseudocyclic (Q-shaped), bicyclic (8-shaped) and knotted (α-shaped) macromolecular origamis were prepared in a relatively straightforward manner. Synthetic polymers are typically difficult to fold into particular origamis because the monomers can usually not be precisely organized along their backbones. Reactive alkyne groups have now been placed at specific locations in linear polystyrene chains, enabling those to be folded into predetermined shapes through intramolecular covalent bonding.

Cite this article

Schmidt, B., Fechler, N., Falkenhagen, J. et al. Controlled folding of synthetic polymer chains through the formation of positionable covalent bridges. Nature Chem 3, 234–238 (2011). https://doi.org/10.1038/nchem.964

View full text

>> Full Text:   Controlled folding of synthetic polymer chains through the formation of positionable covalent bridge

DNA charge transport over 34 nm

Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance micr