Optimizing the specificity of nucleic acid hybridization

Author:  ["David Yu Zhang","Sherry Xi Chen","Peng Yin"]

Publication:  Nature Chemistry

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Chemistry

Abstract

The specific hybridization of complementary sequences is an essential property of nucleic acids, enabling diverse biological and biotechnological reactions and functions. However, the specificity of nucleic acid hybridization is compromised for long strands, except near the melting temperature. Here, we analytically derived the thermodynamic properties of a hybridization probe that would enable near-optimal single-base discrimination and perform robustly across diverse temperature, salt and concentration conditions. We rationally designed ‘toehold exchange’ probes that approximate these properties, and comprehensively tested them against five different DNA targets and 55 spurious analogues with energetically representative single-base changes (replacements, deletions and insertions). These probes produced discrimination factors between 3 and 100+ (median, 26). Without retuning, our probes function robustly from 10 °C to 37 °C, from 1 mM Mg2+ to 47 mM Mg2+, and with nucleic acid concentrations from 1 nM to 5 µM. Experiments with RNA also showed effective single-base change discrimination. High-fidelity pairing of nucleic acid polymers is important in the development of sensors and for the application of DNA nanotechnology. Here, a set of hybridization probes is described that discriminates single-base changes with high specificity. The probes function robustly across many different temperatures, salinities and nucleic acid concentrations.

Cite this article

Zhang, D., Chen, S. & Yin, P. Optimizing the specificity of nucleic acid hybridization. Nature Chem 4, 208–214 (2012). https://doi.org/10.1038/nchem.1246

View full text

>> Full Text:   Optimizing the specificity of nucleic acid hybridization

Non-lattice surface oxygen species implicated in the catalytic partial oxidation of decane to oxygen

Controlling on-surface polymerization by hierarchical and substrate-directed growth