Membrane disruption by optically controlled microbubble cavitation

Author:  ["Paul Prentice","Alfred Cuschieri","Kishan Dholakia","Mark Prausnitz","Paul Campbell"]

Publication:  Nature Physics

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Physics

Abstract

In fluids, pressure-driven cavitation bubbles have a nonlinear response that can lead to extremely high core-energy densities during the collapse phase—a process underpinning phenomena such as sonoluminescence1 and plasma formation2. If cavitation occurs near a rigid surface, the bubbles tend to collapse asymmetrically, often forming fast-moving liquid jets that may create localized surface damage3. As encapsulated microbubbles are commonly used to improve echo generation in diagnostic ultrasound imaging, it is possible that such cavitation could also lead to jet-induced tissue damage. Certainly ultrasonic irradiation (insonation) of cells in the presence of microbubbles can lead to enhanced membrane permeabilization and molecular uptake (sonoporation)4,5,6,7, but, although the mechanism during low-intensity insonation is clear8, experimental corroboration for higher pressure regimes has remained elusive. Here we show direct observational evidence that illuminates the energetic micrometre-scale interactions between individual cells and violently cavitating shelled microbubbles. Our data suggest that sonoporation at higher intensities may arise through a synergistic interplay involving several distinct processes.

Cite this article

Prentice, P., Cuschieri, A., Dholakia, K. et al. Membrane disruption by optically controlled microbubble cavitation. Nature Phys 1, 107–110 (2005). https://doi.org/10.1038/nphys148

View full text

>> Full Text:   Membrane disruption by optically controlled microbubble cavitation

Electric field control of spin transport

Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond