Scaling of proton acceleration driven by petawatt-laser–plasma interactions

Author:  ["L. Robson","P. T. Simpson","R. J. Clarke","K. W. D. Ledingham","F. Lindau","O. Lundh","T. McCanny","P. Mora","D. Neely","C.-G. Wahlström","M. Zepf","P. McKenna"]

Publication:  Nature Physics

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Physics

Abstract

The possibility of using high-power lasers to generate high-quality beams of energetic ions is attracting large global interest. The prospect of using laser-accelerated protons in medicine attracts particular interest, as these schemes may lead to compact and relatively low-cost sources. Among the challenges remaining before these sources can be used in medicine is to increase the numbers and energies of the ions accelerated. Here, we extend the energy and intensity range over which proton scaling is experimentally investigated, up to 400 J and 6×1020 W cm−2 respectively, and find a slower proton scaling than previously predicted. With the aid of plasma-expansion simulation tools, our results suggest the importance of time-dependent and multidimensional effects in predicting the maximum proton energy in this ultrahigh-intensity regime. The implications of our new understanding of proton scaling for potential medical applications are discussed.

Cite this article

Robson, L., Simpson, P., Clarke, R. et al. Scaling of proton acceleration driven by petawatt-laser–plasma interactions. Nature Phys 3, 58–62 (2007). https://doi.org/10.1038/nphys476

View full text

>> Full Text:   Scaling of proton acceleration driven by petawatt-laser–plasma interactions

Quasiparticle dynamics in graphene

Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval