A quantum-enhanced prototype gravitational-wave detector

Author:  ["K. Goda","O. Miyakawa","E. E. Mikhailov","S. Saraf","R. Adhikari","K. McKenzie","R. Ward","S. Vass","A. J. Weinstein","N. Mavalvala"]

Publication:  Nature Physics

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Physics

Abstract

Substantial improvements, through the use of squeezed light, in the sensitivity of a prototype gravitational-wave detector built with quasi-free suspended optics represents the next step in moving such devices out of the lab and into orbit. The quantum nature of the electromagnetic field imposes a fundamental limit on the sensitivity of optical precision measurements such as spectroscopy, microscopy and interferometry1. The so-called quantum limit is set by the zero-point fluctuations of the electromagnetic field, which constrain the precision with which optical signals can be measured2,3,4. In the world of precision measurement, laser-interferometric gravitational-wave detectors4,5,6 are the most sensitive position meters ever operated, capable of measuring distance changes of the order of 10−18 m r.m.s. over kilometre separations caused by gravitational waves from astronomical sources7. The sensitivity of currently operational and future gravitational-wave detectors is limited by quantum optical noise6. Here, we demonstrate a 44% improvement in displacement sensitivity of a prototype gravitational-wave detector with suspended quasi-free mirrors at frequencies where the sensitivity is shot-noise-limited, by injecting a squeezed state of light1,2,3. This demonstration is a critical step towards implementation of squeezing-enhancement in large-scale gravitational-wave detectors.

Cite this article

Goda, K., Miyakawa, O., Mikhailov, E. et al. A quantum-enhanced prototype gravitational-wave detector. Nature Phys 4, 472–476 (2008). https://doi.org/10.1038/nphys920

View full text

>> Full Text:   A quantum-enhanced prototype gravitational-wave detector

Tunable narrowband terahertz emission from mastered laser–electron beam interaction

Beating the channel capacity limit for linear photonic superdense coding