Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy

Author:  ["W. D. Wise","M. C. Boyer","Kamalesh Chatterjee","Takeshi Kondo","T. Takeuchi","H. Ikuta","Yayu Wang","E. W. Hudson"]

Publication:  Nature Physics

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Physics

Abstract

The checkerboard pattern observed in high-temperature superconductors by scanning tunnelling microscopy is widespread, but what does it mean? And what does it say about the mysterious ’pseudogap’? One of the main challenges in understanding high-Tc superconductivity is to disentangle the rich variety of states of matter that may coexist, cooperate or compete with d-wave superconductivity. At centre stage is the pseudogap phase, which occupies a large portion of the cuprate phase diagram surrounding the superconducting dome1. Using scanning tunnelling microscopy, we find that a static, non-dispersive, ‘checkerboard’-like electronic modulation exists in a broad regime of the cuprate phase diagram and exhibits strong doping dependence. The continuous increase of checkerboard periodicity with hole density strongly suggests that the checkerboard originates from charge-density-wave formation in the antinodal region of the cuprate Fermi surface. These results reveal a coherent picture for static electronic orderings in the cuprates and shed important new light on the nature of the pseudogap phase.

Cite this article

Wise, W., Boyer, M., Chatterjee, K. et al. Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy. Nature Phys 4, 696–699 (2008). https://doi.org/10.1038/nphys1021

View full text

>> Full Text:   Charge-density-wave origin of cuprate checkerboard visualized by scanning tunnelling microscopy

Heavy electrons and the symplectic symmetry of spin

Sisyphus cooling and amplification by a superconducting qubit