Thermodynamic signature of growing amorphous order in glass-forming liquids

Author:  ["G. Biroli","J.-P. Bouchaud","A. Cavagna","T. S. Grigera","P. Verrocchio"]

Publication:  Nature Physics

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Physics

Abstract

That the dynamical properties of a glass-forming liquid at high temperature are different from behaviour in the supercooled state has already been established. Numerical simulations now suggest that the static length scale over which spatial correlations exist also changes on approaching the glass transition. Supercooled liquids exhibit a pronounced slowdown of their dynamics on cooling1 without showing any obvious structural or thermodynamic changes2. Several theories relate this slowdown to increasing spatial correlations3,4,5,6. However, no sign of this is seen in standard static correlation functions, despite indirect evidence from considering specific heat7 and linear dielectric susceptibility8. Whereas the dynamic correlation function progressively becomes more non-exponential as the temperature is reduced, so far no similar signature has been found in static correlations that can distinguish qualitatively between a high-temperature and a deeply supercooled glass-forming liquid in equilibrium. Here, we show evidence of a qualitative thermodynamic signature that differentiates between the two. We show by numerical simulations with fixed boundary conditions that the influence of the boundary propagates into the bulk over increasing length scales on cooling. With the increase of this static correlation length, the influence of the boundary decays non-exponentially. Such long-range susceptibility to boundary conditions is expected within the random first-order theory4,9,10 (RFOT) of the glass transition. However, a quantitative account of our numerical results requires a generalization of RFOT, taking into account surface tension fluctuations between states.

Cite this article

Biroli, G., Bouchaud, JP., Cavagna, A. et al. Thermodynamic signature of growing amorphous order in glass-forming liquids. Nature Phys 4, 771–775 (2008). https://doi.org/10.1038/nphys1050

View full text

>> Full Text:   Thermodynamic signature of growing amorphous order in glass-forming liquids

Bias-driven high-power microwave emission from MgO-based tunnel magnetoresistance devices

Ultrafast control of donor-bound electron spins with single detuned optical pulses