Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade

Author:  ["Andrei Faraon","Ilya Fushman","Dirk Englund","Nick Stoltz","Pierre Petroff","Jelena Vučković"]

Publication:  Nature Physics

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Physics

Abstract

Analysis of the optical characteristics of a chip-based photonic crystal cavity embedded with a quantum dot demonstrates the occurrence of both photon tunnelling and photon blockade phenomena. Such behaviour could prove useful in the development of single-photon transistors and detectors. Quantum dots in photonic crystals are interesting because of their potential in quantum information processing1,2 and as a testbed for cavity quantum electrodynamics. Recent advances in controlling3,4 and coherent probing5,6 of such systems open the possibility of realizing quantum networks originally proposed for atomic systems7,8,9. Here, we demonstrate that non-classical states of light can be coherently generated using a quantum dot strongly coupled to a photonic crystal resonator10,11. We show that the capture of a single photon into the cavity affects the probability that a second photon is admitted. This probability drops when the probe is positioned at one of the two energy eigenstates corresponding to the vacuum Rabi splitting, a phenomenon known as photon blockade, the signature of which is photon antibunching12,13. In addition, we show that when the probe is positioned between the two eigenstates, the probability of admitting subsequent photons increases, resulting in photon bunching. We call this process photon-induced tunnelling. This system represents an ultimate limit for solid-state nonlinear optics at the single-photon level. Along with demonstrating the generation of non-classical photon states, we propose an implementation of a single-photon transistor14 in this system.

Cite this article

Faraon, A., Fushman, I., Englund, D. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nature Phys 4, 859–863 (2008). https://doi.org/10.1038/nphys1078

View full text

>> Full Text:   Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade

The role of magnetic anisotropy in the Kondo effect

Time-resolved dynamics of the spin Hall effect