Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

Author:  ["Benjamin D. Stocker","Raphael Roth","Fortunat Joos","Renato Spahni","Marco Steinacher","Soenke Zaehle","Lex Bouwman","Xu-Ri","Iain Colin Prentice"]

Publication:  Nature Climate Change

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Climate environment

Abstract

The sensitivity of the terrestrial biosphere to changes in climate constitutes a feedback mechanism with the potential to accentuate global warming. Process-based modelling experiments now indicate that under a business-as-usual emissions scenario the biosphere on land is expected to be an increasingly positive feedback to anthropogenic climate change, potentially amplifying equilibrium climate sensitivity by 22–27%. Atmospheric concentrations of the three important greenhouse gases (GHGs) CO2, CH4 and N2O are mediated by processes in the terrestrial biosphere that are sensitive to climate and CO2. This leads to feedbacks between climate and land and has contributed to the sharp rise in atmospheric GHG concentrations since pre-industrial times. Here, we apply a process-based model to reproduce the historical atmospheric N2O and CH4 budgets within their uncertainties and apply future scenarios for climate, land-use change and reactive nitrogen (Nr) inputs to investigate future GHG emissions and their feedbacks with climate in a consistent and comprehensive framework1. Results suggest that in a business-as-usual scenario, terrestrial N2O and CH4 emissions increase by 80 and 45%, respectively, and the land becomes a net source of C by AD 2100. N2O and CH4 feedbacks imply an additional warming of 0.4–0.5 °C by AD 2300; on top of 0.8–1.0 °C caused by terrestrial carbon cycle and Albedo feedbacks. The land biosphere represents an increasingly positive feedback to anthropogenic climate change and amplifies equilibrium climate sensitivity by 22–27%. Strong mitigation limits the increase of terrestrial GHG emissions and prevents the land biosphere from acting as an increasingly strong amplifier to anthropogenic climate change.

Cite this article

Stocker, B., Roth, R., Joos, F. et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nature Clim Change 3, 666–672 (2013). https://doi.org/10.1038/nclimate1864

View full text

>> Full Text:   Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios

Mitigation of short-lived climate pollutants slows sea-level rise

Intensification of winter transatlantic aviation turbulence in response to climate change