Facile removal of stabilizer-ligands from supported gold nanoparticles

Author:  ["Jose A. Lopez-Sanchez","Nikolaos Dimitratos","Ceri Hammond","Gemma L. Brett","Lokesh Kesavan","Saul White","Peter Miedziak","Ramchandra Tiruvalam","Robert L. Jenkins","Albert F. Carley","David Knight","Christopher J. Kiely","Graham J. Hutchings"]

Publication:  Nature Chemistry

CITE.CC academic search helps you expand the influence of your papers.

Tags:     Chemistry

Abstract

Metal nanoparticles that comprise a few hundred to several thousand atoms have many applications in areas such as photonics, sensing, medicine and catalysis. Colloidal methods have proven particularly suitable for producing small nanoparticles with controlled morphologies and excellent catalytic properties. Ligands are necessary to stabilize nanoparticles during synthesis, but once the particles have been deposited on a substrate the presence of the ligands is detrimental for catalytic activity. Previous methods for ligand removal have typically involved thermal and oxidative treatments, which can affect the size or morphology of the particles, in turn altering their catalytic activity. Here, we report a procedure to effectively remove the ligands without affecting particle morphology, which enhances the surface exposure of the nanoparticles and their catalytic activity over a range of reactions. This may lead to developments of nanoparticles prepared by colloidal methods for applications in fields such as environmental protection and energy production. Small nanoparticles with controlled morphologies can be prepared for catalysis applications by colloidal methods using stabilizing ligands. A solvent-extraction method has now been described that removes the ligands without affecting the morphology of the nanoparticles, or their catalytic activity over a range of reactions.

Cite this article

Lopez-Sanchez, J., Dimitratos, N., Hammond, C. et al. Facile removal of stabilizer-ligands from supported gold nanoparticles. Nature Chem 3, 551–556 (2011). https://doi.org/10.1038/nchem.1066

View full text

>> Full Text:   Facile removal of stabilizer-ligands from supported gold nanoparticles

Light-induced spin-crossover magnet

A microdroplet dilutor for high-throughput screening