Actin and serum response factor transduce physical cues from the microenvironment to regulate epider

Author:  ["John T. Connelly","Julien E. Gautrot","Britta Trappmann","David Wei-Min Tan","Giacomo Donati","Wilhelm T.S. Huck","Fiona M. Watt"]

Publication:  Nature Cell Biology

CITE.CC academic search helps you expand the influence of your papers.

Tags:  Stemcells   Biological

Abstract

How cell shape influences cell fate decisions is unclear. Epidermal stem cell fate is regulated by cell shape through the actin cytoskeleton and SRF transcriptional activity. Epidermal homeostasis depends on a balance between stem cell renewal and differentiation and is regulated by extrinsic signals from the extracellular matrix (ECM)1,2. A powerful approach to analysing the pathways involved is to engineer single-cell microenvironments in which individual variables are precisely and quantitatively controlled3,4,5. Here, we employ micropatterned surfaces to identify the signalling pathways by which restricted ECM contact triggers human epidermal stem cells to initiate terminal differentiation. On small (20 μm diameter) circular islands, keratinocytes remained rounded, and differentiated at higher frequency than cells that could spread on large (50 μm diameter) islands. Differentiation did not depend on ECM composition or density. Rather, the actin cytoskeleton mediated shape-induced differentiation by regulating serum response factor (SRF) transcriptional activity. Knockdown of SRF or its co-factor MAL inhibited differentiation, whereas overexpression of MAL stimulated SRF activity and involucrin expression. SRF target genes FOS and JUNB were also required for differentiation: c-Fos mediated serum responsiveness, whereas JunB was regulated by actin and MAL. Our findings demonstrate how biophysical cues are transduced into transcriptional responses that determine epidermal cell fate.

Cite this article

Connelly, J., Gautrot, J., Trappmann, B. et al. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat Cell Biol 12, 711–718 (2010). https://doi.org/10.1038/ncb2074

View full text

>> Full Text:   Actin and serum response factor transduce physical cues from the microenvironment to regulate epider

Interplay between Cdh1 and JNK activity during the cell cycle

Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex